Книги по Forex и биржевой торговле
Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика

В книге американского автора в общедоступной форме излагаются основы построения нейрокомпьютеров. Описаны структура нейронных сетей и различные алгоритмы их настройки. Отдельные главы посвящены вопросам реализации нейронных сетей. Для специалистов в области вычислительной техники, а также студентов соответствующих специальностей вузов.

Дилинговый центр Forex4you Дилинговый центр AForex


Устойчивость

Как и в других сетях, веса между слоями в этой сети могут рассматриваться в виде матрицы W. В работе [2] показано, что сеть с обратными связями является устойчивой, если ее матрица симметрична и имеет нули на главной диагонали, т. е. если wij = wji и wii = 0 для всех i.

Устойчивость такой сети может быть доказана с помощью элегантного математического метода. Допустим, что найдена функция, которая всегда убывает при изменении состояния сети. В конце концов эта функция должна достичь минимума и прекратить изменение, гарантируя тем самым устойчивость сети. Такая функция, называемая функцией Ляпунова, для рассматриваемых сетей с обратными связями может быть введена следующим образом:



где Е – искусственная энергия сети; wij – вес от выхода нейрона i к входу нейрона j;
OUTj – выход нейрона j; Ij – внешний вход нейрона j; Тj – порог нейрона j.

Изменение энергии Е, вызванное изменением состояния j-нейрона, есть

Допустим, что величина NET нейрона j больше порога. Тогда выражение в скобках будет положительным, а из Уравнения (6.1) следует, что выход нейрона j должен измениться в положительную сторону (или остаться без изменения). Это значит, что ?OUT. может быть только положительным или нулем и ?Е должно быть отрицательным. Следовательно, энергия сети должна либо уменьшиться, либо остаться без изменения.


Для беспроблемного трейдинга рекомендую брокера Exness – здесь разрешен скальпинг, любые советники и стратегии; также можно иметь дело с Альпари; для инвесторов – однозначно Альпари с его множеством инвестиционных возможностей. – примеч. главного админа (актуально на 18.09.2017 г.).


Далее, допустим, что величина NET меньше порога. Тогда величина ?OUTj может быть только отрицательной или нулем. Следовательно, опять энергия должна уменьшиться или остаться без изменения.

И окончательно, если величина NET равна порогу, ?j равна нулю и энергия остается без изменения.

Это показывает, что любое изменение состояния нейрона либо уменьшит энергию, либо оставит ее без изменения. Благодаря такому непрерывному стремлению к уменьшению энергия в конце концов должна достигнуть минимума и прекратить изменение. По определению такая сеть является устойчивой.

Симметрия сети является достаточным, но не необходимым условием для устойчивости системы. Имеется много устойчивых систем (например, все сети прямого действия!), которые ему не удовлетворяют. Можно продемонстрировать примеры, в которых незначительное отклонение от симметрии может приводить к непрерывным осцилляциям. Однако приближенной симметрии обычно достаточно для устойчивости систем.

Яндекс.Метрика
Лучшие брокеры:
Альпари
Forex4you
AForex
Содержание Далее
Дилинговый центр AForex Forex: пять шагов к успешному трейдингу Дилинговый центр Forex4you