Приложение Б. Алгоритмы обучения. ОБУЧЕНИЕ С УЧИТЕЛЕМ И БЕЗ УЧИТЕЛЯ
Искусственные нейронные сети обучаются самыми разнообразными методами. К счастью, большинство методов обучения исходят из общих предпосылок и имеет много идентичных характеристик. Целью данного приложения является обзор некоторых фундаментальных алгоритмов, как с точки зрения их текущей применимости, так и с точки зрения их исторической важности. После ознакомления с этими фундаментальными алгоритмами другие, основанные на них, алгоритмы будут достаточно легки для понимания и новые разработки также могут быть лучше поняты и развиты.
Обучающие алгоритмы могут быть классифицированы как алгоритмы обучения с учителем и без учителя. В первом случае существует учитель, который предъявляет входные образы сети, сравнивает результирующие выходы с требуемыми, а затем настраивает веса сети таким образом, чтобы уменьшить различия.
Слава Україні!
Адмін сайту, який є громадянином України та безвиїзно перебуває в Україні на протязі всього часу повномасштабної російської агресії, зичить щастя та мирного неба всім українським хлопцям та дівчатам! Також він рекомендує українським трейдерам кращих біржових та бінарних брокерів, що мають приємні торгові умови та не співпрацюють з російською федерацією. А саме:
Exness – для доступу до валютного ринку;
RoboForex – для роботи з CFD-контрактами на акції;
Deriv – для опціонної торгівлі.
Ну, і звичайно ж, заборонену в росії компанію Альпарі, через яку Ви маєте можливість долучитися як до валютного ринку, так і до торгівлі акціями та бінарними опціонами (Fix-Contracts). Крім того, Альпарі ще цікава своїми інвестиційними можливостями. Дивіться, наприклад:
рейтинг ПАММ-рахунків;
рейтинг ПАММ-портфелів.
Все буде Україна!
Трудно представить такой обучающий механизм в биологических системах; следовательно, хотя данный подход привел к большим успехам при решении прикладных задач, он отвергается исследователями, полагающими, что искусственные нейронные сети обязательно должны использовать те же механизмы, что и человеческий мозг.
Во втором случае обучение проводится без учителя, при предъявлении входных образов сеть самоорганизуется посредством настройки своих весов согласно определенному алгоритму. Вследствие отсутствия указания требуемого выхода в процессе обучения результаты непредсказуемы с точки зрения определения возбуждающих образов для конкретных нейронов. При этом, однако, сеть организуется в форме, отражающей существенные характеристики обучающего набора. Например, входные образы могут быть классифицированы согласно степени их сходства так, что образы одного класса активизируют один и тот же выходной нейрон.
|